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Harmonic oscillator with variable mass 

P G L Leach 
Department of Applied Mathematics, La Trobe University, Bundoora 3083, Australia 

Received 1 March 1983 

Abstract. A general treatment of the quantal harmonic oscillator with variable mass is 
given. Various examples additional to those obtained by Colegrave and Abdalla for which 
a closed form solution is possible are given. 

1. Introduction 

In recent papers of Colegrave and Abdalla (1981a,b, 1982) particular examples of 
an harmonic oscillator with variable mass parameter have been treated. The two 
examples were an exponentially changing mass (Colegrave and Abdalla 1981b) and 
a strongly pulsating mass (Colegrave and Abdalla 1982). As discussed by Colegrave 
and Abdalla (1981a) the problem arises in a Fabray-Perot cavity. 

In this note we discuss an alternative treatment of the general problem of the 
variable mass oscillator with Hamiltonian 

H ( t )  = $ p 2 / M ( t )  + $ l 4 ( t ) w 2 q 2  (1.1) 

where M ( t )  is the variable mass and w ,  q and p have the usual meanings. We believe 
that this treatment has some advantage over that used in the work of Colegrave and 
Abdalla, in that it is more direct and leads directly to the solution of the Schrodinger 
equation corresponding to the Hamiltonian (1.1) which is 

(1.2) 

There are two points at which the treatment contained herein differs from that 
found in Colegrave and Abdalla (1982). In contrast to their approach, firstly a change 
of time scale is introduced and then a generalised canonical transformation (Lewis 
and Leach 1982, Munier et a1 1981) is made. This reduces the Hamiltonian to that 
of a time-independent harmonic oscillator for which the solution of the corresponding 
Schrodinger equation is well known. The solution of the original Schrodinger equation 
(1.2) follows automatically using the integral transform method of Wolf (1979). In 
this particular instance, because the space part of the generalised canonical transforma- 
tion is a point transformation, the integral transform reduces to a geometric transform 
(Leach 1977) so that a possibly awkward integration is avoided. 

The Hamiltonian ( l . l ) ,  which is the basis for the treatment outlined in this note, 
is particularly simple in structure and accords some simplifications in the calculations. 
The identification of the required form of the generalised canonical transformation 
is straightforward since it is already known in  the literature (cf Leach 1977). The 
collapse of the integral transform to a geometric transform follows from the pointlike 

{ - [ h 2 / 2 ~ ( t ) ]  a 2 / a q 2  + S ~ ( t ) w ’ q ’ } 4  = ih a 4 / a t .  
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nature of that transformation. However, the method outlined here may be extended 
to Hamiltonians more complex than (1.1). A positive definite quadratic Hamiltonian 
(with additional linear terms if so desired) will require an integral transform in general. 
If the Hamiltonian is that of a nonlinear system of specific time-dependent form (cf 
Leach 1981), the same treatment as given here is applicable. For such a system the 
difficulty lies in the solution of a time-independent Schrodinger equation with a general 
potential. Unfortunately closed form solutions to such Schrodinger equations are not 
usually available. 

The purpose of this note is to demonstrate the solution of the Schrodinger equation 
(1.2) by a particular direct method. This is done for a general time-varying mass 
function M ( t ) .  

2. Canonical transformation of the Hamiltonian 

A change of time scale for a Hamiltonian system may be regarded as a particular 
type of generalised canonical transformation. For the Hamiltonian (1.1) it is 

(4,  p ,  t ) + ( q ' ,  p ' ,  t : q '  =q ,  p '  = p ,  r f  = I ' M - ' ( s )  ds). 

The presence of simple or multiple zeros of M ( t )  for finite t merely means that the 
time scale in the primed space has been expanded by comparison with that of the 
original space. An example of this is given in the discussion of 9: 7.  

The physical system described by (1.1) is now equivalently described by 

H'( t ' )  = 3 p r 2  + tN?( t ' )w2qr2  (2.2) 

N [ t ' ( t ) ]  = M ( t ) .  (2.3) 

where 

We recognise that the new Hamiltonian (2.2) is just that of the time-dependent 
harmonic oscillator about which there exists an extensive literature. The Hamiltonian 
(2.2) may be transformed into that of the time-independent harmonic oscillator 

B ( T ) = $ P 2 + i Q 2  (2.4) 

by means of a generalised canonical transformation which is a point transformation 
in the space variables. Rather than just quote the transformation, it may be of interest 
to some readers to view its derivation. The derivation is in two parts. 

A linear point canonical transformation from (q' ,  p ' )  to (Q' ,  P ' )  has the form 

Q' = q ' /p ,  P' = pp '  -Uq', (2.5) 

where p and U are as yet unspecified functions of t ' .  The type-zero generating function 
(cf Lewis and Leach 1982) is determined according to 

aFQ/aq' = p '  -e' aQ'/aq, aFQ/ap' = -P' a Q ' / a p ' ,  (2.6) 

and, after the expressions for Q' and P' in (2.5) are substituted into (2.6), we have 

Fdq' ,  P ' ,  t ' )  = &c+/p)q" + t7 (('1. (2.7) 

The additive function of t' is not required and is hereafter abandoned. The transformed 
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Hamiltonian is determined by 

Ri(ti) = H’(t’) + P I  aQ’/at‘ +aF/at’ (2.8) 

and, after the appropriate substitutions and rearrangements are made, is 

G’(t’) = + ( a l p  -b/p)P‘Q’+ $ ( N 2 u 2 p 2  + u2 + b p  - ub)Q” (2.9) 

where a dot indicates differentiation with respect to t ’ .  The term in P‘Q’ may be 
removed by the identification of (T with b and (2.9) becomes 

(2.10) 

We now require p ( t ’ )  to be a solution of the so-called auxiliary equation (Eliezer and 
Gray 1976) 

p( t ’ )=$p-2p’2+1  2(N 2 2 P 2 +6p)Qf2 .  

p + N 2 u 2 p  = l /p3 .  (2.11) 

fit([’) = ~ P - ~ ( P ‘ ~  + Q l 2 ) .  

Then (2.10) reads 

(2.12) 

The generalised canonical transformation 

(Q’,  P’, t’)+ Q, P, T :  Q = Q’, P =PI,  T = 

yields the time-independent form (2.4). 

generalised canonical transformation 

P - ~ ( s )  ds (2.13) ( I“ ) 
In summary, the transformation from (2.2) to (2.4) is achieved by means of the 

1 ’  

(q’, p ‘ ,  t ’ )  + ( Q ,  P, T :  Q = q’/p, P = pp’-bq’, T = I p -’is) ds) (2.14) 

where p ( t ’ )  is a solution of (2.11). 

Remark. In the case of a general quadratic Hamiltonian 

H(t) =a( t )p2+2b( t )qp+c( t )q2  (2.15) 

the procedure is almost precisely the same as that given above. Firstly the a ( t )  is 
eliminated by means of a change of time variable and then a linear transformation 
of the form 

(2.16) 

is employed. The cross term in Q, P is eliminated by putting its coefficient equal to 
zero and an auxiliary equation obtained just as (2.11) was. It should be emphasised 
that for Schrodinger equation treatments, the signatures of the original and trans- 
formed Hamiltonians must be the same. 

(4, p )  + (Q, P :  Q = a q  +Pp,  P = yq +ap, a d  - P y  = 1) 

3. Solution of the Schrodinger equation 

Corresponding to the Hamiltonians ( l . l ) ,  (2.2), (2.12) and (2.4) we have respectively 
the following Schrodinger equations: 

(3.1) { - [ h 2 / 2 ~ ( t ) ]  a2/aq2 + i ~ ( t ) w ~ 4 ~ } 4  = ih  a4/at, 
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The eigenfunctions of (3.4) are well known. We have 

&,,(Q, T) = [2”n ! ( ~ h ) ’ / ~ ] - ~ / ~  exp[-i(n ++)TI e ~ p [ - ~ Q ~ / h ] H , [ Q / ) i ” ~ ]  (3.5) 

where H a ( . )  is the nth Hermite polynomial. The solution of (3.3) is related to that 
of (3.4) according to 

&:(a’, t ’ )  =&[a‘, T(t’)l. (3.6) 

The solution of (3.2) is obtained from that of (3.3) by means of the integral transform 
method of Wolf (1979). Since the canonical transformation from the Hamiltonian (2.2) 
to (2.12) is a point transformation, the integral transform collapses to a geometric 
transform and we have (cf Leach 1977) 

~ k ( q ’ ,  t ’ )  = (p(t’)/-1/2 exp[$ip-’(tf)~(r’)qf2/~]$,~-’(tf)q‘, ~ ( t ’ ) ] .  (3.7) 

Finally the solution of (3.1) follows from that of (3.2) by a relationship of the same 
form as that given in (3.6). We have 

$,, (4,  t )  = b[t’(t)ll-1/2 e x p ~ ~ i p ~ ’ [ ~ ’ ( ~ ) l ~ [ t ’ ( t ) l q 2 1 h } ~ , C p - ’ [ t ’ ( t ) l q ,  T[t’(t)ll (3.8) 

where it should be remembered that p is the derivative of p with respect to t‘. If we define 

v ( t )  =p[t’(t) l ,  ~ ( t )  = T[t’(t)l, (3.9) 

(3.10) 

where C indicates the derivative of v ( t )  with respect to t. 
It is interesting to note that the structure of the right-hand side of (3.10) is not 

really much more complicated than that of a time-independent harmonic oscillator. 

4. Expectation values and matrix elements 

Although the Schrodinger wavefunction (3.10) is not much more complicated in  form 
than that for the time-independent oscillator, the extra exponential and the more 
involved nature of the arguments in the various functions do add to the algebraic 
difficulty of computing matrix elements and expectation values. The computational 
task may be reduced by using the canonical transformations relating the classical 
variables ( q , p )  and (Q, P ) .  If we write the states I), (3.10) and &,, (3.5) in Dirac 
notation as In) and l f i )  respectively we have the simple result that 

( n l f ( q , p ) l n )  = (clF(Q, Pllfi) (4.1) 
where 

F[Qiq, t ) ,  P(q,  P, ?)I  =fiq,  P I .  (4.2) 
Naturally attention must be paid to ordering. In particular we have the well known 
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formulae for expectation values: 

( f i lQ l f i )  = 0, (filPlfi) = 0, (filQ'Ifi) = h(n +;), 

(fiIPQ + QPlfi) = 0, (fiIP21fi) = h(n +;,. (4.3) 
It is then a trivial exercise to calculate that 

(n1q)n)=(fiIvQlfi)=O, (nIpIn)=(filP/v+M+QIfi)=O, 

(n lq2/n)  = (fi /v2Q21fi)  = v2h(n +;), 

(njqp +pqIn)= (f iIvQ(P/v +M+Q)+(P/v +M+Q)vQIfi)  

=2Mv+(filQzlfi)+(filQp+PQlfi)= 2MvL;h(n +;), (4.4) 

( n i p 2 1 n ) = ( ~ l ~ 2 / v 2 + ( ~ ~ / v ) ( ~ ~ + ~ ~ ) + ~ 2 + 2 ~ 2 1 f i ) =  ( Y - 2 + ~ 2 + 2 ) h ( n  ++I. 

We note that the Heisenberg uncertainty relation is 

(4.5) 

For completeness we write down the matrix elements. For the time-independent 

2 2 . 2  2 ((AP)')((A~)')  = (1 + M  v Y vi ( n  +;I' 

which is greater than that for the corresponding time-independent problem. 

oscillator we have 

(filQ21fi') h{&[n'(n'-  1)]1/2Sn,n,-2 + ( n  +;)S,.,t+;[n(n - 1)]1/2Sn.n'+2}, 

( f i l ~ ~ + ~ ~ I f i ' )  = ih{[n(n - 1)1~/*~, , . , , ,+2 - [ n ' ( n ' -  1)I1/*~n,n'-2}r 

(filP21fi') = h{ - i [n ' (n ' -  1)]1/2Sn,n'-2 + ( n  +;)S,*,,+t[n(n - 1)]1/2Sn,n'+2}. (4.6) 

It follows that for the original time-dependent system 

(n  1q21n ') = v2(filQ21fi') 

= v2h{i[n ' (n ' -  1)]1/2Sn,n'-2 + ( n  +;)S,,,,+;[n(n - 1)]1'2Sn,n'-2}, 

= (h/v2){;(M2v2C;2-  2 M Y +  - l ) [n ' (n ' -  1)]1/2Sn,n'-2 

+ (M2v2 i .2  + l ) (n  + + ) S , , , .  

+ ; ( M 2 v 2 + 2  + 2iMvr; - l)[n (n  - 1)]1/2Sn.n'+2}. 

(n  lp 'In ') = v-'(fi IP2 + Mvl; (QP + PQ) + M 2 v  '+ 2Q2jfi') 

(4.7) 

The matrix elements of H are given by 

( n  IH In ') = ( n  l ip  ' / M  + +Mu 'In ') = $M-'(n lp 'In ') + ;Mu ' ( n  1q 2/n '). (4.8) 

5. The examples of Colegrave and Abdalla 

It is not a difficult task to recover the results of Colegrave and Abdalla by simply 
substituting their expressions for M ( t )  in the appropriate formula. However, as will 
be seen below, there is some advantage in keeping the treatment general for the time 
being. Given an M ( t ) ,  our main task is to determine v ( t )  which is defined in (3.9).  
To a lesser extent we are also interested in ~ ( f )  which was also defined in (3.9), but, 
as it has not occurred in any of the expectation values or matrix elements, we shall 
concentrate on v ( t ) .  
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To obtain an explicit expression v ( t )  we need to obtain explicit relationships from 

t ' =  / , ;M- ' ( s )  ds 

where usually we shall set to = 0 and 

(5.1) 

@ ( f ' )  + N 2 ( t ' ) w 2 p ( f ' )  = p - 3 ( t ' ) .  (5.2) 

The solution of ( 5 . 2 )  is (cf Eliezer and Gray 1976) 

where al(t ' )  and a2(t') are two independent solutions of 

G ( f ' )  + N 2 ( f ' ) 0 2 a ( t ' )  = 0 (5.4) 

and the constants A, B and C are related according to 

AB - C2 = W - 2 ,  w = (+I ( t  ')c+2(t ') - b1 ( t  ' ) a 2 (  t '). ( 5 . 5 )  

As far as v ( t )  is concerned we may conflate the double exercise implied by (5.1) 

a(t '( t))  = Y ( t ) .  (5.6) 

and (5.2) by means of the following transformations. Let 

Then (5.4) becomes 

j ;  +[n;r(t)/M(t)]j +w2y = 0 (5.7) 

where now a dot indicates differentiation with respect to t. From (5.3) we have 

v ( t !  =[Ay:(t)+By:(t) + 2 C ~ i ( f ) y z ( t ) I ~ ' ~  (5.8) 

and the Wronskian in (5.5) is 

w = M - ' ( t ) [ y d t ) Y 2 ( f )  - j 1 ( t ) y z ( t ) l .  (5.9) 

A further change of variable can be made to reduce (5.7) to normal form. As M ( t )  
is non-negative on physical grounds, we may write 

M ( t )  = 772( t ) ,  I ( t )  = 77 ( f l y  ( t ) ,  (5.10) 

to transform (5.7) to 

i.'+ ( U 2  - i j / q ) J  = 0. (5.11) 

Whether we attempt to solve equation (5.7) or (5.11) is a matter of no great 
import. However, (5.11) does suggest a particularly simple set of selections of the 
variable mass. If i j  is a constant multiple of 77, both M ( t )  and l ( t )  are easily determined. 
We have three possible cases: 

2 6) M ( t )  = exp(2at), + = a  77, 

(ii) M ( t )  = (1 +sty, i j = O  

(iii) M ( t )  = cos2 at, i j = - a  77. 2 

Cases (i) and (iii) hhve been dealt with by Colegrave and Abdalla (1981b, 1982). We 
will assume that for case (i), a is small enough for w 2  -a  to be positive. From (5.11) 
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we have 

l1 = sin pt, l 2  = cos pt, (5.12) 

where p 2 = w 2 - a 2 ,  u2, w 2 + a 2  for cases (i), (ii) and (iii) respectively. In each case 
the Wronskian W has the value -p. So, 

v ( t )   AT-^ sin2 Pt + B v - ~  cos2 Pt + 2C9-2 sin p t  cos @ I 2 .  (5.13) 

From ( 5 . 5 )  we see that 

A B  - C' = 1/p2 

and, looking at (5.13), it is apparent that the choice 

(5.14) 

A = B = 1/p, c=o, (5.15) 

gives the simple result 

v ( t )  = 9 - 1 ( t ) p - 1 ' 2 .  (5.16) 

The expressions for ( n l v i n )  and (nlTln) (V  and T are the potential and kinetic 
energies respectively) in cases (i) and (iii) replicate those given by Colegrave and 
Abdalla. For case (ii) we have 

(n/Vln)=tMw2v2h(n + t ) = j w h ( n  1 +i), 
(nlTln)  = $ M - ' ( V - ~ + M ~ C ~ ) ~ ( ~  +;) 

1 = Z[O + (a 2 / w ) (  1 + a t ) -2]h (n  + t ) .  

(5.17) 

(5.18) 

6. Some other variable masses 

The simplicity of the solution of (5.11) when i j / q  is a constant does not persist when 
i j / v  is non-constant. However, with a little ingenuity and the assistance of a reference 
work such as Kamke (1959), it is possible to obtain a few solutions for various varying 
masses with not much difficulty. As examples we have the following. 

0) 9 ( t )  = w cosh wt - t-' sinh wt, 

51(t) = t2 ,  5 2 ( f )  = t - ' ,  

w = -3, 

v 2 ( t )  = (w cosh wt -t-l  sinh wt) ( t6+  1 ) / 3 t 2 .  

(ii) 9 ( t )  = t 2 ,  

l l ( t )  = w sin ut +ut-' cos u t ,  

w = --o 3, 

v ( t )  = ( W 3 t 2 ) - 1 ' 2 ( w 2 + t - 2 ) 1 ' 2 *  

9 ( t )  = t", 

1 2 ( t )  = U  2 cos u t  -ot- ' s in  wt, 

More generally, for 

[ ( r )  = t m ( t - l ~ ) m ( c l  sin-ot+c2cosut) ,  
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where D represents dldt  and 

n EZ+V{O},  m = I n '  
77 ( t )  = COS" at, 

[ ( t )  = COS" at(c0s-l atD)"(C1 sin Pt + c2 cos P t ) ,  

-n + 1, n €2-, 

(cf Kamke 1959, p 435, 2.153). 

(iii) 

where D =dld (a t )  and P 2 = w 2 + a 2 n 2 .  The case n = 1 was given in $ 5 .  For n = 2 ,  

v ( t )  =p- ' / '  cos-* at(1 +P-' tan' at)'". 

(See Kamke 1959, p 504,4.20.) 

50) = exp(-h2t2)(yl(cut) + y z ( a t ) )  
1 2 2  

(iv) 77(f)=exp(-za t 1, 
where 

a (-l)"x2" 2 w 2 ( w 2 - 4 ) .  . . ( W  -4n + 4 ) ,  

a (-1)nX2"+l 2 
2 

Y l ( x ) = l +  c 
" = I  (2n)! 

y z ( x ) = x +  c (W -2)(0 - 6 ) .  . . (w2-4n +2). 
" = I  (2n+1)!  

( V I  T( t )=H,(x)exp(-+t2) .  

(vi) q ( t )  = T"(C0S t )  

The solution has the same form as in (iv) with w 2  replaced by p 2  = w 2  + (2n + 1). 

(T,(cos t )  is a Chebyshev polynomial of the first kind). 

l1 =sin Pt, 5 2  = cos Pt, p 2  = w 2  + n 2 ,  

v ( t )  = p 2 T ; '  (cost) .  

31(t) = (a t )1 /2Jp(a t ) ,  5 2 0 )  = (at)'/2Yp(cut), p 2 =  v 2 - W 2  

v ( 0  = (.rr/2a) J "  (a t )Mp(at ) ,  

M:, (a t )  =J:, (cut) + Y:, (at) .  

(vii) l J ( t )  = ( a f ) 1 ' 2 J " ( a f ) ,  

1 / 2  - 1  

where 

7. Discussion 

The examples given in $3: 5 and 6 do have some objectionable features from a physical 
viewpoint. It will be recalled that the function ~ ( t )  is the square root of the mass of 
the oscillator. In the various examples, the mass can become infinite or zero at some 
time which may be finite. Colegrave and Abdalla (1982) have remarked that a mass 
which becomes zero could arise in an ideal situation for a Fabry-Ptrot cavity. However, 
they do state in their conclusion that a gentler variation of mass which avoids such 
extremes is to be preferred. The effect of a zero in M ( t )  is to change the time scale 
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in (q' ,  p ' ,  t ' )  space. This is easily illustrated with the function used by Colegrave and 
Abdalla (1982). There M ( t )  = cos2 at and so 

t ' =  J ' s e c 2 a s d s = a - ' t a n a t ,  

i.e. the time between successive zeros of M ( t ) ,  ?r/a, is expanded to infinity in terms 
of t ' .  

The method adopted in this note does provide a procedure for dealing with the 
case of the mass varying periodically without zeros. For reasons which will become 
apparent shortly we merely outline the procedure. A suitably periodic non-zero mass 
can be given by writing 

q ( t ) = a + b  cosat, a>1bI>0. (7.1) 

["+[02 + a 2  -aa2 / (a  + b  cos  at)]^ = 0. (7.2) 

Equation (5.11) is then 

The change of variable 

(7.3) 

y ~ ~ + 4 [ p 2 - l / ( l + f f  cos2x)ly = o  (7.4) 

wherep2=(W2+a2) / a2  and lo \= lb / a I< l .  
Equation (7.4) is of the form of Hill's equation for which a standard treatment 

exists (cf Ince 1956, 383ff). However, that treatment is beyond the bounds of a note. 
Alternatively, equation (7.2) may be transformed to Heun's equation (cf Kamke 
1959, 2.329, p 485), the treatment of which is also rather lengthy. We merely wish 
to make the point that a physically realistic periodically varying mass can be treated 
in terms of known differential equations. 
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